
THE FUTURE OF CANCER DATA: UNLOCKING INSIGHTS WITH PATHOLOGY REPORTING

Pathology Report to Public Health and Back: Supporting Cancer **Research and Discoveries** Alison Van Dyke, MD, PhD OCTOBER 6 | 3:00-3:45 PM CT

COLLEGE of AMERICAN PATHOLOGISTS Laboratory Quality Solutions

CAP23 | CHICAGO **#PATHDATA**

INTO DISCOVERY

Pathology Report to Public Health and Back: **Supporting Cancer Research** and **Discoveries**

Alison Van Dyke, MD, PhD, FCAP

October 6, 2023

IONAL CANCER INSTITUTE

Conflicts of Interest & Support

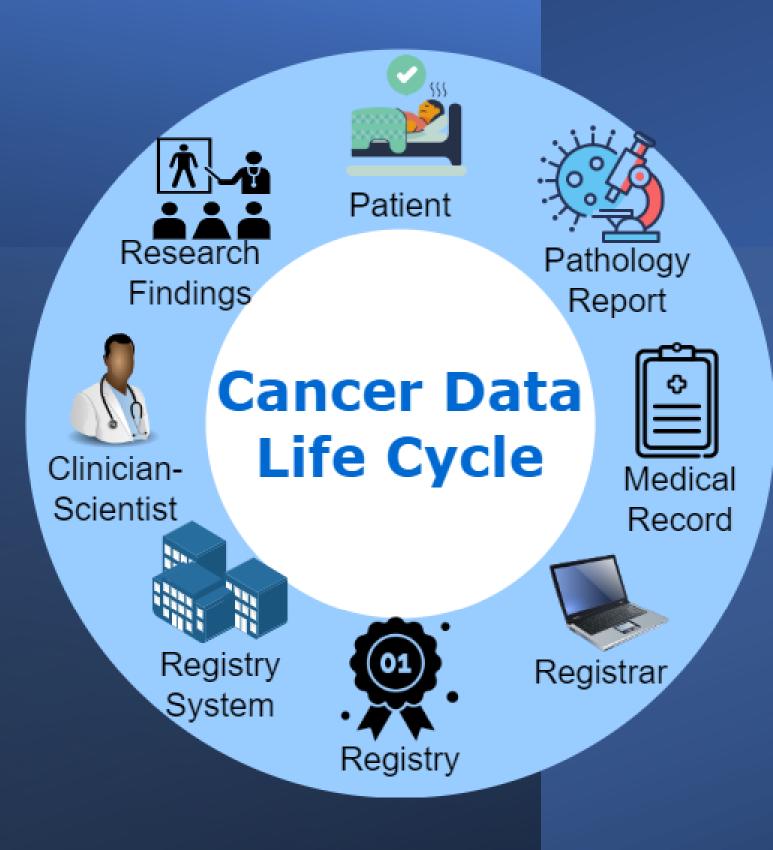
I have no conflicts of interest or other financial disclosures to declare.

The work described in this presentation and the NCI/SEER and CDC/NPCR cancer registry systems are funded and operated by the U.S. Federal Government.

I am employed by the National Cancer Institute of the National Institutes of Health.

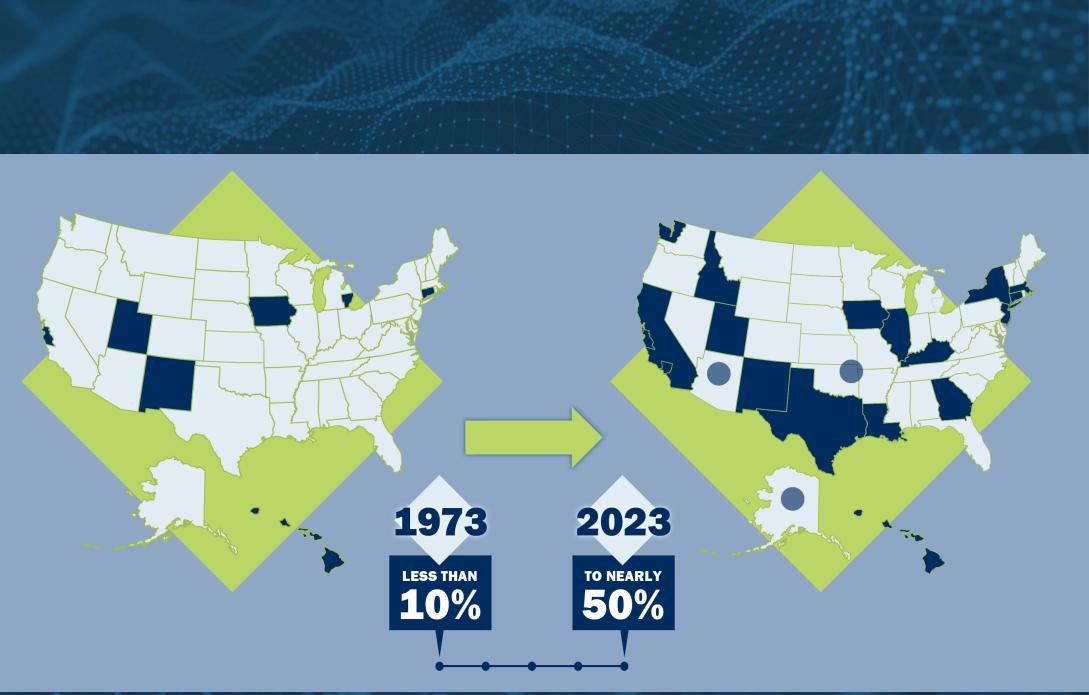
are nent. f the

Objectives

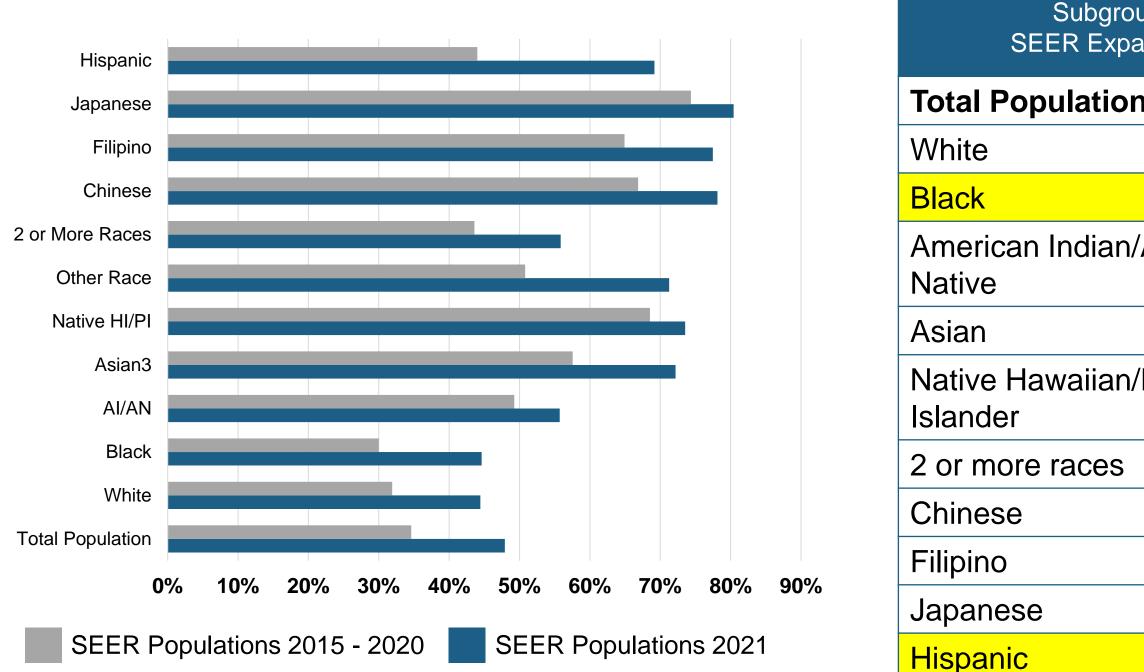

Understand the life cycle of pathology report data in cancer surveillance and how it can lead to advances in cancer care

Understand how variability of terminology used in pathology reports and outdated standards lead to inconsistencies and inaccuracies in data captured

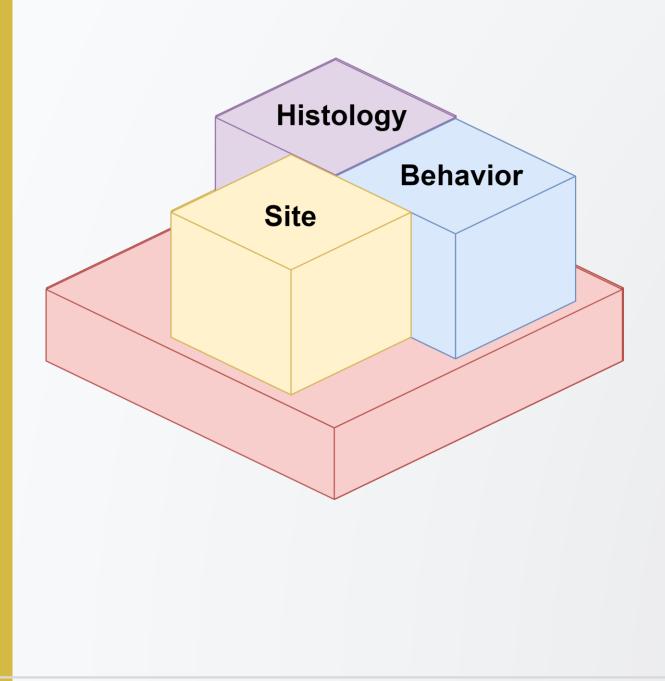
Know about a cancer surveillance initiative with CAP to facilitate accurate cancer registry data collection and how to gain access to population-based cancer data for research



Cancer Surveillance & Pathologists: Data Quality Partners


- >850,000 cases/year
- Rare cancers
- Cases with rare outcomes
- Additional cancers
- Understudied populations

NATIONAL CANCER INSTITUTE

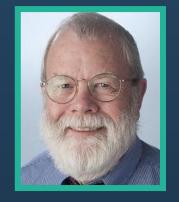

Increase in Representation of Population Subgroups with SEER Expansion Percent Increase

for US Pop pups with ansion 202	
n	13.3
	12.5
	14.6
/Alaska	6.5
	14.6
/Pacific	5.0
	12.3
	11.3
	12.5
	6.1
	25.2

Foundation of Cancer Surveillance Data Capture

Site Specific Data Items (SSDIs) – ex: Breast

- \succ ER, PR, HER2
- Axillary nodal involvement
- Oncotype DX
- Multigene Signature


Statistics Reported for

- Incidence
- Outcomes
- > Trends
- Additional Cancers

SEER*ClinCORE Pathologists

Aaron Auerbach Hematopathology

James Connolly Breast Pathology

Brent Harris Neuropathology

Pei Hui GYN Pathology

Jim Lewis Jr. Head/Neck Pathology & HPV

Ricardo Lloyd Endocrine Pathology

Jessica Davis Bone/Soft Tissue & Pediatric Pathology

Kay Washington GI Pathology

Peter Humphrey Male Genital/Urinary Pathology

Priya Nagarajan Dermatopathology

CAP-NCI Problem Solving – Site-Morphology Combinations, Terminology & Coding

Richard Moldwin CAP

Keren Hulkower CAP

Serban Negoita NCI

Different terminology used across standard-setters & stakeholders •

- Variation in terminology & coding over time •
- ✤ ~24-month timeline for implementing new histology standards in cancer surveillance

Cancer surveillance standards overdue for major overhaul

Alison Van Dyke NCI

Cancer PathCHART Acronym

Cancer

Pathology

Coding

Histology

And

Registration Terminology

Collaborating Organizations

International Agency for Research on Cancer

*

Statistics Canada Statistique Canada

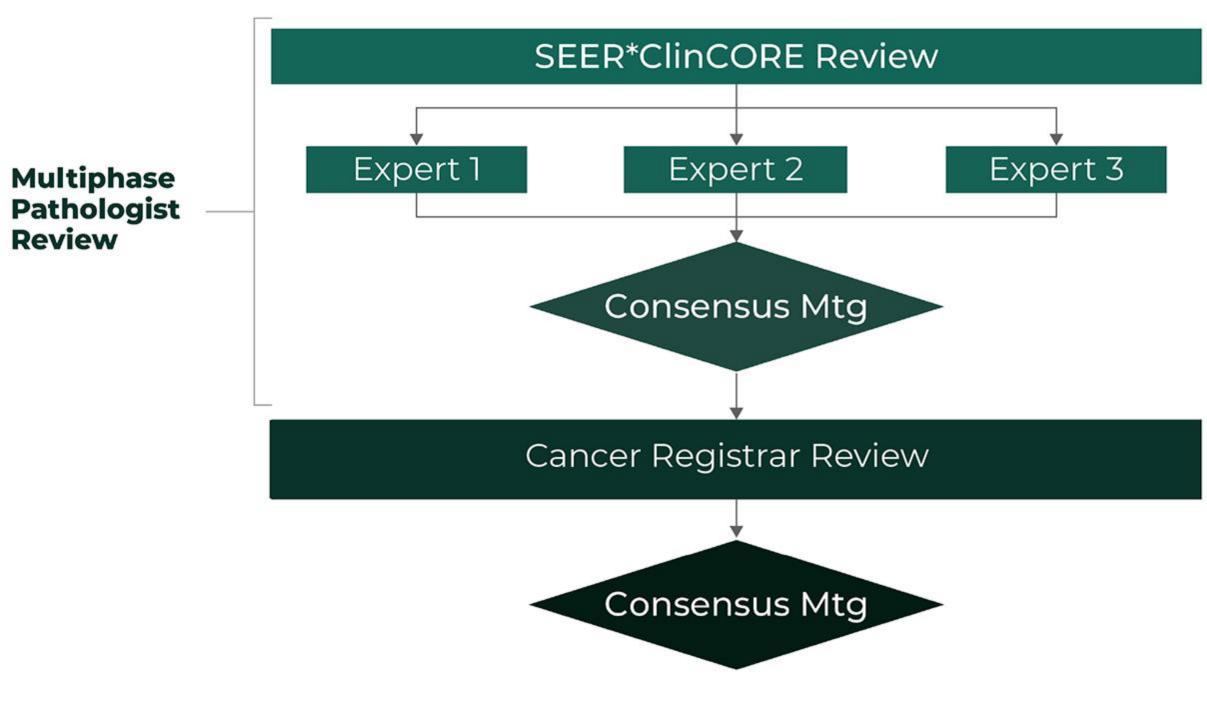
AJCC American Joint Committee on Cancer

IACR International Association of Cancer Registries

COLLEGE of AMERICAN PATHOLOGISTS

Cancer PathCHART

Cancer Surveillance Standards


Picture Link

Modified from: U.S. Department of Transportation, Federal Highway Administration. Accessed April 28, 2023

Cancer Registrar

Language in Pathology Reports

Interdisciplinary Review Process

Expert Pathologist Review

Independent Review by 3 Expert Pathologists

Consensus Among Pathologists

Consensus Among Cancer Registrar and Pathologists

Pathologist Reviewer Decisions

Biologically Valid

No further review needed

Example Adenocarcinoma of the colon & rectum

Biologically Unlikely

Histology is unlikely in this site/organ system and may be an error

Example Squamous cell carcinoma in situ of the rectum (more likely of the anal canal)

Biologically Impossible

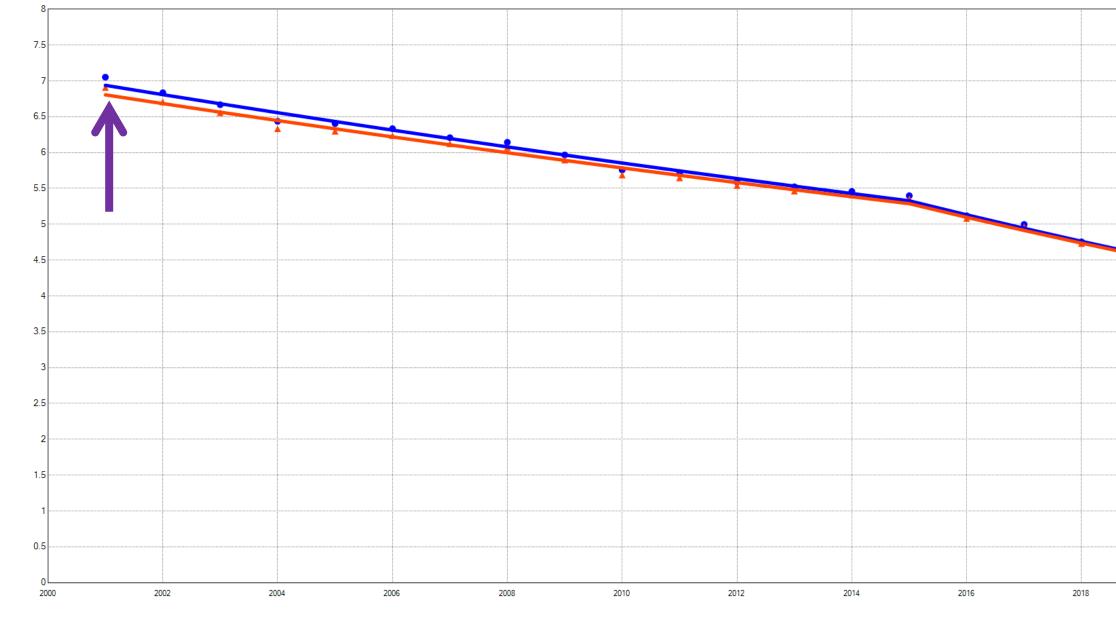
Cancer registrars cannot record this combination in the cancer registry database

Example Hepatocellular carcinoma of the prostate

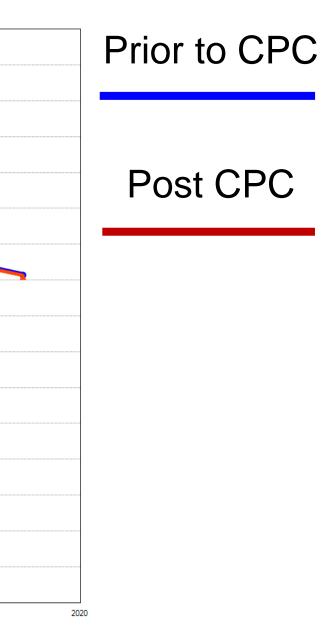
Send for Consensus

Determination to be made via consensus among multiple pathologists and **CTRs**

Previously Valid Ovarian Histologies Deemed Impossible - examples


Morphology	ICD-O-3.2 Term	Count
8051/3	Verrucous carcinoma, NOS	0
8052/2	Papillary squamous cell carcinoma, non-invasive	0
8070/2	Squamous cell carcinoma in situ, NOS	41
8230/2	Ductal carcinoma in situ, solid type	0
8261/2	Adenocarcinoma in situ in villous adenoma	0
8261/3	Adenocarcinoma in villous adenoma	0
8262/3	Villous adenocarcinoma	4
8263/2	Adenocarcinoma in situ in tubulovillous adenoma	0
8263/3	Adenocarcinoma in tubulovillous adenoma	21
8510/3	Medullary carcinoma, NOS	2

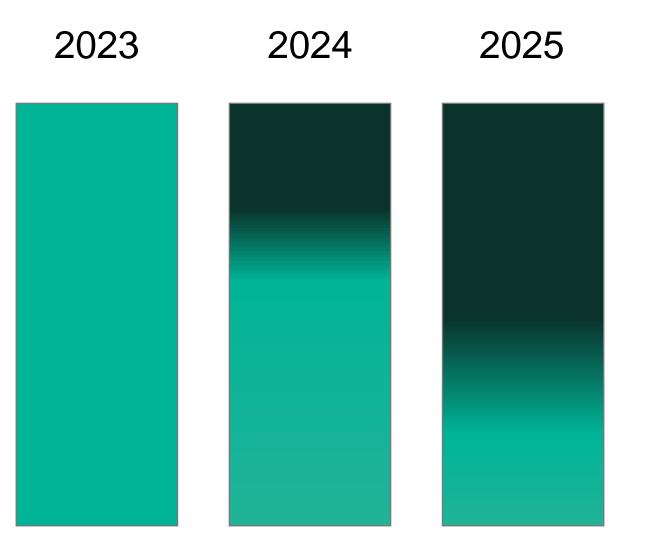
Ovarian Cases: Impact estimate of CPC changes


Before Review	# of Histologies	2019 Case Count	% of Total Cases	Expert Review Designation	# of Histologies	2019 Case Count	% of Total Cases
SEER Site/Type				Valid	64	17,806	98.7
Validation List	107	17,932	99.0	Unlikely	3	9	<0.1
Validation List				Impossible	40	117	0.6
Manual		110	1.0	Valid	5	4	<0.1
	228			Unlikely	40	33	0.2
Review/Override				Impossible	183	73	0.4
				Valid	0	0	0
Impossible	3	0	0	Unlikely	0	0	0
				Impossible	3	0	0
				Valid	0	0	0
New WHO	7	7 0	0	Unlikely	0	0	0
Code/Term				Impossible	7	0	0
Total	345	18,042	100	Total	345	18,042	100

Valid or Override Histologies of the Ovary

Age-Adjusted Rate/Trend

Year of diagnosis



Implementation Timeline

Cancer PathCHART Updated Standards

Previous Standards

All Organ Sites

2026

Pathologist Reviewers-completed

Bone & Soft Tissue

John SA Chrisinger, MD Jessica Davis, MD Karen Fritchie, MD Paari Murugan, MD

Breast

Veerle Bossuyt, MD James Leo Connolly, MD Mary Elizabeth Edgerton, MD, PhD Patrick L. Fitzgibbons, MD

Central Nervous System

Brent Harris, MD, PhD David Louis, MD Arie Perry, MD

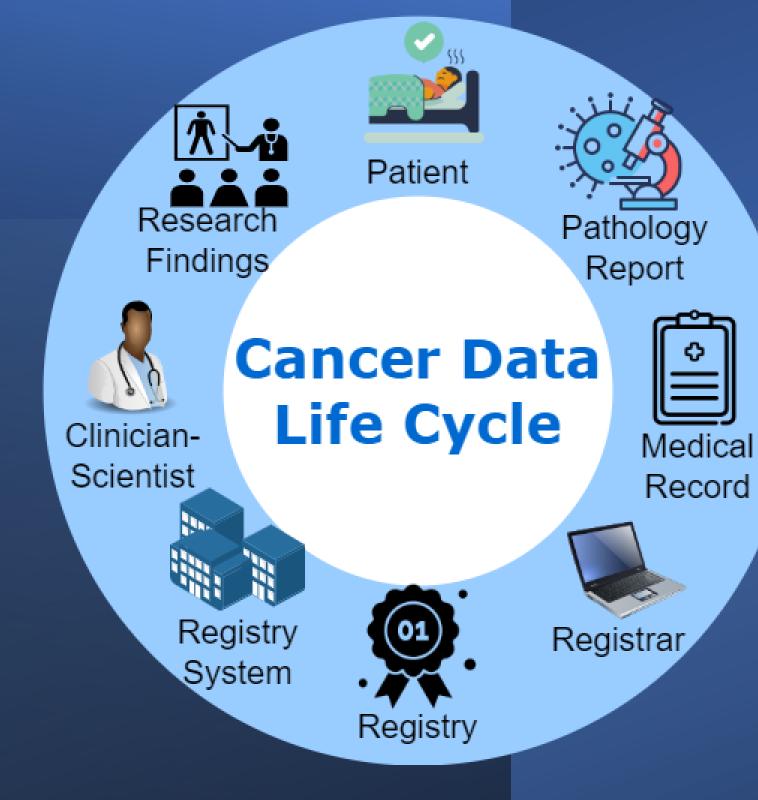
Digestive System Volkan Adsay, MD Olca Basturk, MD Norman Carr, MB, BS, FRCPath Jessica Davis, MD Dhanpat Jain, MD Sanjay Kakar, MD Gregory Lauwers, MD Robert Odze, MD Asif Rashid, MBBS, PhD Romil Saxena, MD Chan Juan Shi, MD, PhD Aatur Singhi, MD, PhD Mike Torbenson, MD Kay Washington, MD, PhD Tsung-The Wu, MD, PhD

20

Pathologist Reviewers-completed

Female Genital System Elizabeth Euscher, MD Ian Hagemann, MD, PhD Pei Hui, MD, PhD Martin Kobel, MD Uma Krishnamurti, MD, MBBS, PhD Mohammad Ruhul Quddus, MD Brian Rous, MD Jian-Jun Wei, MD

Male Genital System Michael Eden, MBBS, FRCPath Jonathan Epstein, MD Peter Humphrey, MD, PhD Gladell P. Paner, MD Joseph Sirintrapun, MD John Robert Srigley, MD, FRCPath **Urinary System** Jonathan Epstein, MD Lara Rabih Harik, MD Peter Humphrey, MD, PhD


For More Information

Visit the Cancer PathCHART website today! https://seer.cancer.gov/cancerpathchart/

Contact Us at NCICancerPathCHART@mail.nih.gov

Search tool of 2024 standards in development

RWE Data Examples

Real World Evidence: Example #1

Characterization of PLCIS on a Population Scale

Time Period	LCIS	PLCIS
2017	8520/2	8520/2
2018 forward	8520/2	8519/2

Addressed using US Cancer Statistics (USCS) 316 PLCIS cases diagnosed in US (2018 to 2020) Analysis of

- differences in demographic & tumor characteristics by cancer type
- risk of subsequent breast cancers after PLCIS vs. DCIS or LCIS
- differences between location & laterality of initial primary & second primary

Characteristic	PLCIS N=316	LCIS N=13,179	DCIS N=104,834	Invasive N=609,143	P-value (PLCIS vs LCIS)	P-value (PLCIS vs DCIS)	P-value (PLCIS vs. Invasive)			
Age (years) - Median (IQR)	61 (52, 68)	53 (47 <i>,</i> 62)	61 (51, 69)	62 (52, 71)	<0.0001	0.99	0.08			
Race/Ethnicity - N (%)										
Non-Hispanic White	227 (75)	9,168 (73)	69 <i>,</i> 383 (69)	425,553 (72)	0.09	0.009	0.07			
Non-Hispanic Black	24 (8)	1,323 (11)	14,272 (14)	71,749 (12)						
Hispanic	28 (9)	1,466 (12)	9,977 (10)	58,828 (10)						
Other	23 (8)	663 (5)	7,648 (8)	34,032 (6)						
Location-initial – N	(%)									
Nipple – C50.0	0 (0)	35 (0.3)	506 (0.5)	2,327 (0.4)	0.006	0.15	0.01			
Central - C50.1	13 (4)	725 (6)	6,659 (6)	27,512 (5)						
UIQ - C50.2	21 (7)	1,048 (8)	9,826 (9)	77,257 (13)						
LIO - C50.3	17 (5)	443 (3)	6,802 (7)	33,383 (6)						
<u>UOQ - C50.4</u>	<u>115 (36)</u>	4,441 (34)	34,227 (33)	214,118 (35)						
LOQ - C50.5	27 (8)	808 (6)	8,244 (8)	46,934 (8)						
Axillary Tail - C50.6	0 (0)	25 (0.2)	95 (0.1)	2,396 (0.4)						
Overlapping -	80 (25)	2,913 (22)	25,459 (24)	140.231 (23)						
C50.8										
Breast, NOS - C50.9	43 (14)	2,741 (21)	13,016 (12)	64,985 (11)						

PLCIS Cases: Morphology of Subsequent Primary

Morphology	N (%)
Any second breast primary (/2 or /3)	N=19
Invasive Breast Cancer (/3)	8 (42)
DCIS (8500/2)	8 (42)
PLCIS (8519/2)	2 (11)
LCIS (8520/2)	1 (5)
Invasive second breast primary (/3)	N=8
Infiltrating duct carcinoma, NOS (8500)	3 (38)
Invasive lobular carcinoma (8520)	4 (50)
Infiltrating duct & lobular carcinoma (8522)	1 (12)

Invasive second breast primary (/3)	N=8
Infiltrating duct carcinoma, NOS (8500)	3 (38)
Invasive lobular carcinoma (8520)	4 (50)
Infiltrating duct & lobular carcinoma (8522)	1 (12)

TURNING CANCER DATA INTO DISCOVERY

Initial Comparisons & Future Analysis

PLCIS with vs. without subsequent breast primary

No differences in age, race/ethnicity, or location of the initial cancer

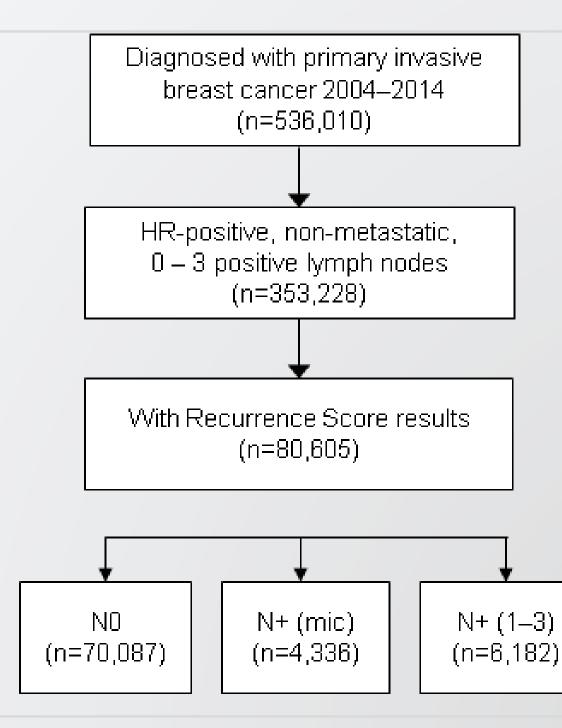
With additional follow up time & diagnosis years

- Repeat analysis of demographic characteristics
- Risk of subsequent breast cancers comparing patients with
 - PLCIS and DCIS
 - PLCIS and LCIS
- Location of initial vs. subsequent primary among PLCIS vs. DCIS patients

Acknowledgements – Breast PLCIS Analysis

NCI/SEER Lois Dickie Serban Negoita Annie Noone Alison Van Dyke

Breast Pathologists Mary Edgerton Uma Krishnamurti Kate Serdy


<u>CDC/NPCR</u> Trevor Thompson Manxia Wu Breast Oncologist Allison Kurian

Real World Evidence: Example #2

Chemotherapy benefit in Oncotype DX Breast Recurrence Score® (RS)tested patients w/ NO disease

Prognosis in RS-tested patients w/ NO, N1mic, & N1 disease treated without adjuvant chemotherapy

Hortobagyi et al. San Antonio Breast Cancer Symposium (December 2018) Abstract P3-11-02

TURNING CANCER DATA INTO DISCOVERY

Valentina Petkov, MD, MPH

Gabriel Hortobagyi, MD

SEER-Genomic Population-Based Findings

5vr BCSS ± SE 9vr BCSS ± SE

 99.7 ± 0.1

RS 0-25

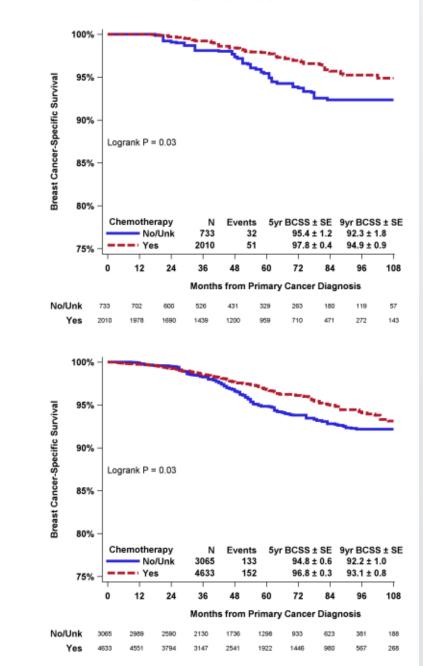
100%

95%

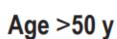
90%

85%

80%


튪

Logrank P = 0.92


Chemotherapy

No/Unk

RS 26-100

	75% -		Ye	-	3506		37	99.6		98.3±0 98.7±0	
		ò	12	24	36	48	60	72	84	96	108
					Months	s from	Primary	Cance	r Diagı	nosis	
No/Un	k 13	3506	13131	11160	9325	7510	5830	4378	2994	1853	940
Ye	s 3	507	3450	3043	2689	2319	1919	1530	1054	697	345
1	00% -			-							
Irvival	95% -										
pecific Su	90% -										
Breast Cancer-Specific Survival	85% -	Log	rank P :	= 0.04							
Breast	80% -	C h				-					
			emothe		N	Even		99.3		9yr BCS	
		_	No.	/Unk	38422	29	2	99.3	± 0.1	97.5±0).2
	75% -		No Ye		38422 4211		33	99.3 98.7		97.5±0 97.4±0	
	75% -	0					_				
	75% -		·Ye	s	4211 36	48	60	98.7	± 0.4 84	97.4 ± 0 96	0.7
No/Un			·Ye	s	4211 36	48	60	98.7 : 72	± 0.4 84	97.4 ± 0 96	0.7

N

13506

Events

Valentina Petkov, MD, MPH

02

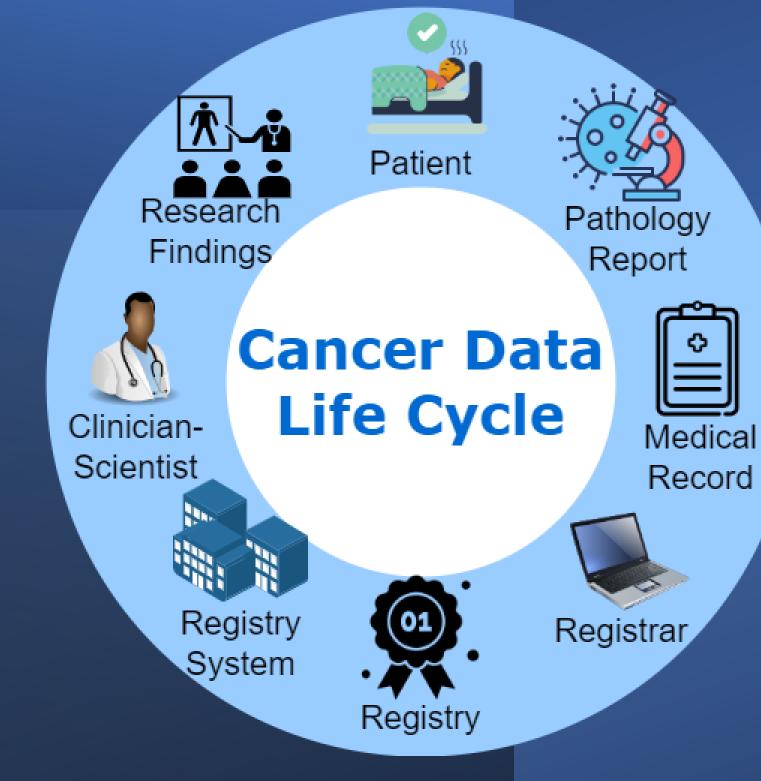
Gabriel Hortobagyi, MD Hortobagyi et al. San Antonio Breast Cancer Symposium (December 2018) Abstract P3-11-

SEER-Genomic Population-Based Findings

- RS predictive of chemotherapy benefit in patients with HR+ NO disease & RS 26-100, supporting the cutoff at RS 26 for chemotherapy benefit
- 9-year BCSS >97% without chemotherapy in patients w/ RS <18 regardless of nodal status
- Insufficient events at analysis to estimate chemotherapy benefit among women with LN-positive disease

Hortobagyi et al. San Antonio Breast Cancer Symposium (December 2018) **Abstract P3-11-02**

Valentina Petkov, MD, MPH



Gabriel Hortobagyi, MD

Reference for RWE Example #2

Hortobagyi, G. N. et al. "Breast cancer-specific mortality (BCSM) in patients (pts) with node-negative (NO) and node-positive (N plus) breast cancer (BC) guided by the 21-gene assay: A SEER-genomic population-based study." *Cancer Research* 2019;79(4S): Meeting Abstract P3-11-02.

New & Future Data Resources

Data Linkages

Why link to genomic/germline testing data?

- More *efficient* way for *data collection* by centralizing data acquisition the Honest Broker b/n SEER registries and industry
- **Difficulties** in training registrars **in coding** genomic/genetic data due to complicated, rapidly changing clinical practice
- Assure completeness and quality of data
- **Case finding** source, especially for cancer patients diagnosed and treated at community specialty practices

Exact Sciences Linkage

Oncotype DX Genomic Prostate Score (GPS)

- Recommended in guidelines for treatment decisions & prediction of adverse pathology, on market since 2013
- 1st time linkage with this test

 Case finding study (~20% of tested cases with no matching in SEER)

Establishing data release process for specialized database

Oncotype DX IBC

- 4th linkage: 2004-2017
- Linkage methodological improvements

Oncotype DX DCIS

Virtual Pooled Registry Cancer Linkage System **VPR-CLS**

- NCI/SEER-funded & NAACCR-managed
- Launched in February 2022
- Linkages between research studies & U.S. registries
- Single linkage software & standard matching criteria
- Aggregate match counts to inform selection of registries for requests

Minimize burden & cost to researchers, registries, & IRBs; Increase ease of access and timely use of registry data

Virtual Pooled Registry Cancer Linkage System **VPR-CLS**

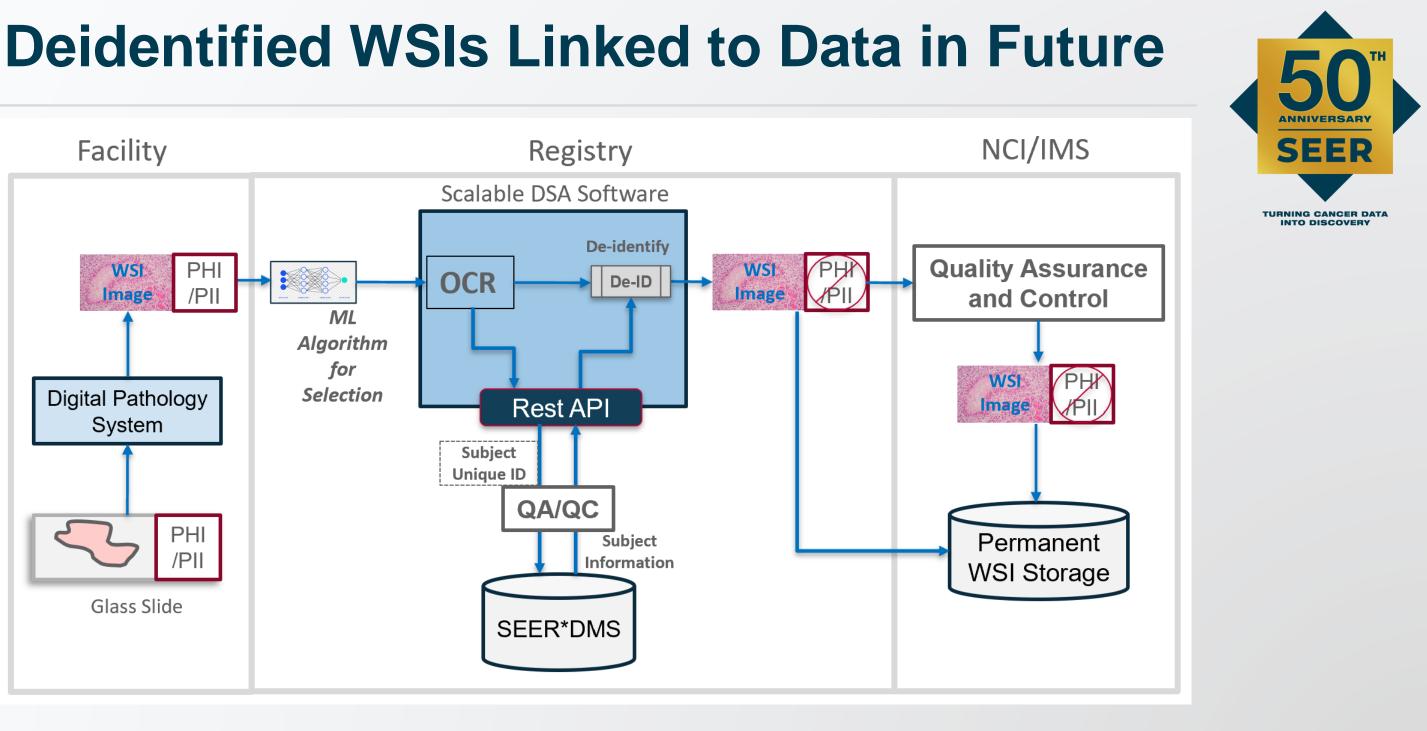
45 participating registries (95% of U.S. population)

22 study linkages with 6 initial pilot test studies

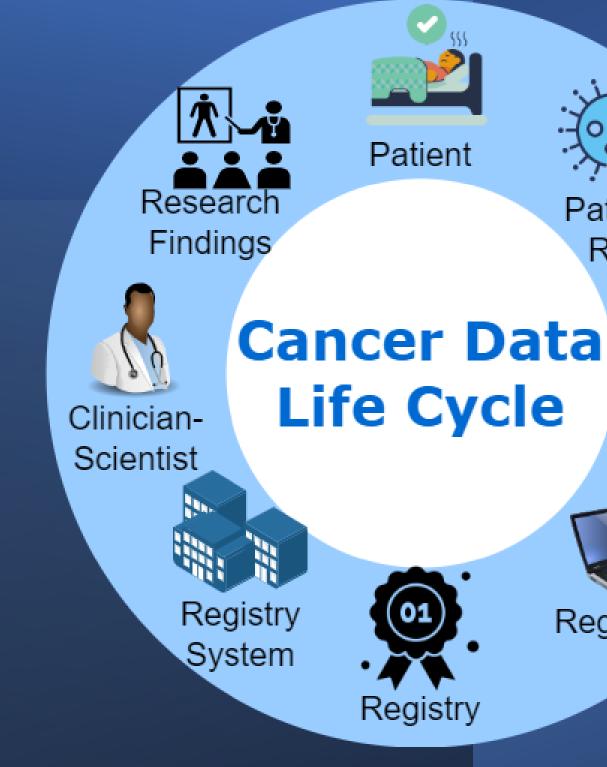
1.1M matches among over 13.5M cohort members

Fact sheets and webinars regarding the Common Rule changes & secondary data sharing: https://www.naaccr.org/vpr-fact-sheets/

VPR Program Manager: Castine Clerkin, cclerkin@naaccr.org



Data Linkages in NCCR Data Platform at 2024 Launch


- Registry-abstracted data
- Social Determinants of Health
- Results of data linkages
 - Children's Oncology Group (COG)
 - Pediatric Proton/Photon Consortium Registry (PPCR)
 - Virtual Pooled Registry (VPR)
 - Medical and Pharmacy claims from multiple data sources

https://digitalslidearchive.github.io/DSA-WSI-DeID/

Cancer Surveillance Data Access

Registrar

Welcome to the Cancer Statistics Explorer Network

Find the cancer statistics tool best suited to your needs.

SEER*Explorer 01

Surveillance, Epidemiology, and End Results Program

Cancer statistics from SEER data by race, age, gender, stage, and cancer subtypes, covering 48% of the U.S. population.

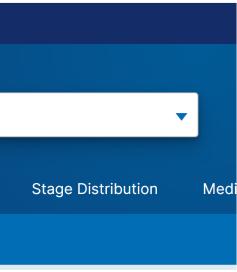
Go to SEER*Explorer

NCCR*Explorer

02

National Childhood Cancer Registry (NCCR)

Childhood, adolescent and young adult cancer statistics from NCCR data, ages 0-39, covering 70% of the U.S. population, and using International Classification of Childhood Cancer (ICCC).

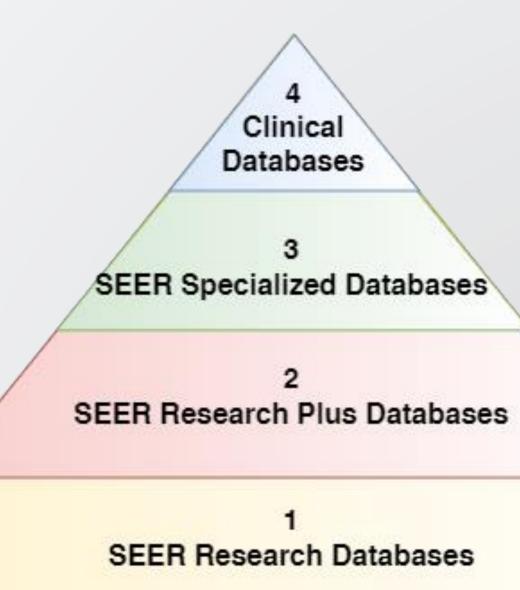

Go to NCCR*Explorer

https://seer.cancer.gov/statistics-network/

SEER*Explorer

Cancer Statistics Expl	lorer Network	SEER*Ex	plorer Up	odated June 8, 2023]
Get Started with a C	Cancer Site				
Colon and Re	ectum				
Recent Trends	Recent Ra	tes Lo	ng-Term T	rends Ra	tes by Age
Compare By:	Sex Ra	ce/Ethnicity	Age	Stage at Dia	agnosis
 All Races / Ethnicit Hispanic (any race Non-Hispanic Ame Native Non-Hispanic Asia Non-Hispanic Blac Non-Hispanic Whi Black (includes Hist 	e) erican Indian / Ala an / Pacific Islanc ck te spanic)	aska	Recent T By Race/Eth	nd Rectum Trends in SE hnicity, Delay-ac D20 incidence rate	ljusted SEER Ind
White (includes Hi Rate Type Selected: Delay-adjusted S		e +	9.0 8.0		Δ
Sex Selected: Female		+	7.0	Δ	<u> </u>
Age Selected: Ages < 50		+	6.0 000 00 5.0	•	V V V
Stage at Diagnosis Selected: All Stages		+	ate per 100,000		

djusted Incidence Rates, 2


ncidence Rate, Female, Ages < 50, Al

not used in the fit of the trend line(s). <u>Imp</u>

SEER Tiered Data Release

- Current data release via SEER*Stat
 - https://seer.cancer.gov/seerstat/
- Tier 4 data resources being developed
- Future plans for data aggregation & access

Information about NCCR Data Products

Open Data Access NCCR*Explorer

Registered Data Access NCCR data in SEER*Stat

Registered & Controlled Data Access NCCR Data Platform

NATIONAL CANCER INSTITUTE Childhood Cancer Data Initiative

National Childhood Cancer Registry Explorer

Statistics for cancers in children, adolescents, and young adults

ABOUT NCCR NCCR*EXPLORER -DATA PRODUCTS HOME

NCCR Data Products

Data from the NCCR are made available through several sources allowing researchers, patients, and advocates to access open and controlled data and promote wider use of childhood cancer data. Read the options below to understand which option best suits your needs.

Childhood Cancer Statistics Available from NCCR Aggregated Data

Data from central cancer registries participating in the NCCR are available at an aggregated level through this website's interactive web application, NCCR*Explorer.

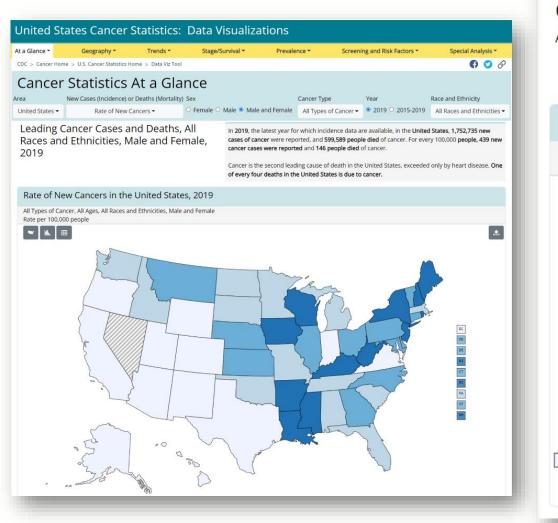
It provides:

- A publicly available, open access web application.
- Comprehensive and frequently requested incidence and survival statistics based on International Classification of Childhood Cancer.
- Age groupings specific for children, adolescents, and young adults ages 0-39.
- Access to precalculated graphs and tables to visualize rates, trends, rates by age, and relative survival by sex, race/ethnicity, age, and by cancer site and subtypes.
- Direct comparison of cancer sites.

https://nccrexplorer.ccdi.cancer.gov/data-products.html

Official Federal Cancer Statistics

U.S. Cancer Statistics


www.cdc.gov/uscs

45 Division of Cancer Prevention and Control

Reliable. Trusted. Scientific.

Data Visualizations Tool

U.S. Cancer Statistics

United States Cancer Statistics: Data Visualizations At a Glance -Stage/Survival -Geography * Trends * Prevalence * CDC > Cancer Home > U.S. Cancer Statistics Home > Data Viz Tool State and County County (2015-2019) New Cases (Incidence) or Deaths (Mortality) Area Georgia -All Counties -Rate of New Cancers -Cancer burden: Georgia cases were reported. All Types of Cancer, 2019 151 died of cancer. Rate of New Cancers in Georgia Sexes All Types of Cancer, All Ages, All Races and Ethnicities, Male and Female, 2015-2019 Rate per 100,000 people All Types of Cancer, 2019 ٤ Rate per 100,000 people **III** 519.7

472.4 - 496.3

www.cdc.gov/uscs/dataviz

436.4 - 472.1

312 - 435.6

Reliable. Trusted. Scientific.

496.7 - 599.1

Male

Public Use Databases

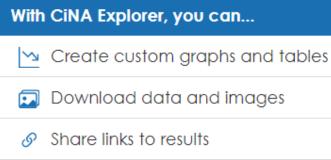
U.S. Cancer Statistics

- Demographics data
 - age, sex, race, ethnicity, state
- Tumor identification
 - primary site, histology, grade, behavior, stage

www.cdc.gov/uscs/public-use

Reliable. Trusted. Scientific.

NAACCR Online CiNA+ Interactive Tools https://apps.naaccr.org/explorer/



North American Association of Central Cancer Registries

CiNA Explorer

Explore Our Statistics

CiNA Explorer is an interactive tool that provides easy access to a wide range of NAACCR cancer statistics. Detailed statistics are available for a NAACCR region or registry by cancer site, gender, race, calendar year, age, and stage.

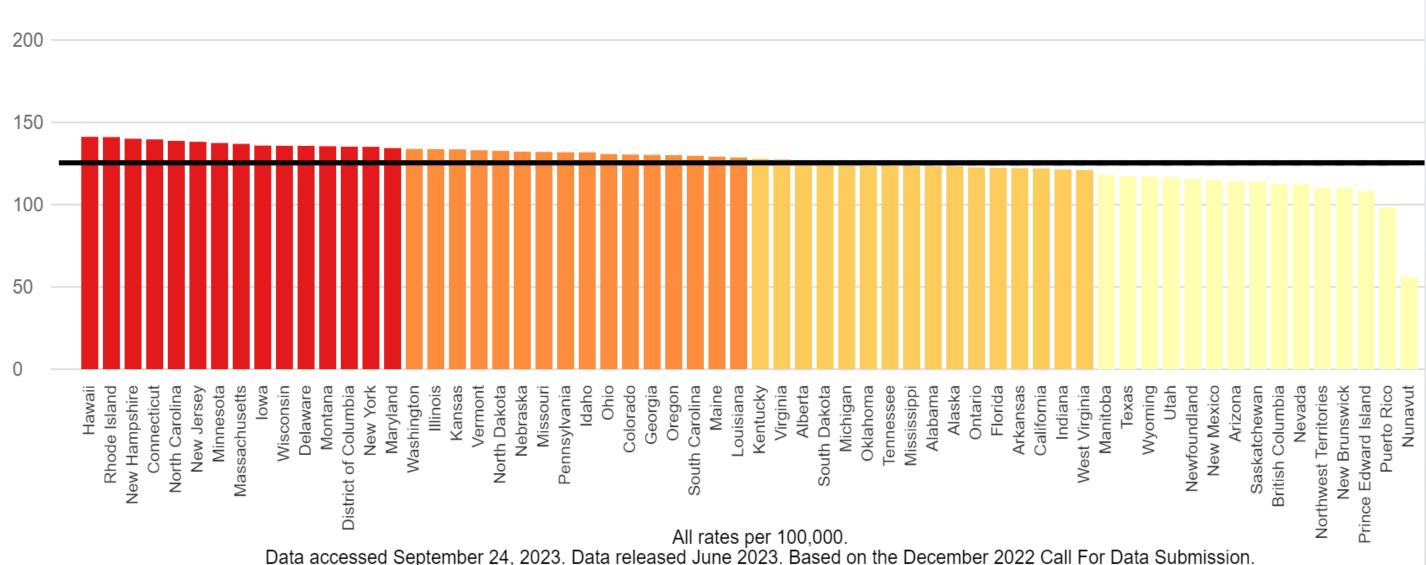
Get Started \rightarrow

Important Note

The COVID-19 pandemic disrupted access to medical care. This resulted in a drop in cancer diagnoses for the year 2020, particularly for cancers diagnosed before symptoms develop, such as in situ female breast cancer. This drop reflects changes in medical care for 2020 and should not be interpreted as a reduction in the underlying cancer burden.

Application

Revision History


Age-Adjusted Invasive Cancer Incidence Rates in North America

s

Breast, Female, 2016 - 2020 By State/Province Age-Adjusted to the 2000 U.S. Standard Population

North America Rate: 125.92 / per 100,000

Age-Adjusted Rate/100,000

© 2023 CINA+ Online
Cancer in North America.

NAACCR Data Access

NAACCR Data Product	Requirements	For More
CiNA Public Use Dataset	Signed DUA	https://www.r public-use-dat
CiNA Research Dataset		https://www.r research/
CiNA Survival & Prevalence Data	NAACCR member as	https://www.r survival/
CiNA Special Dataset Request	PI/Co-PI	Contact NAAC Manager of Da Research (rsherman@na

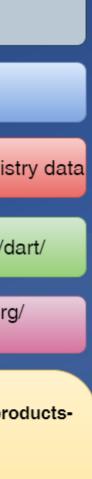
- Released via SEER*Stat: <u>https://seer.cancer.gov/seerstat/</u>
- Need collaborator who has experience working in SEER*Stat

e Information

<u>naaccr.org/cina-</u> <u>ta-set/</u>

naaccr.org/cina-

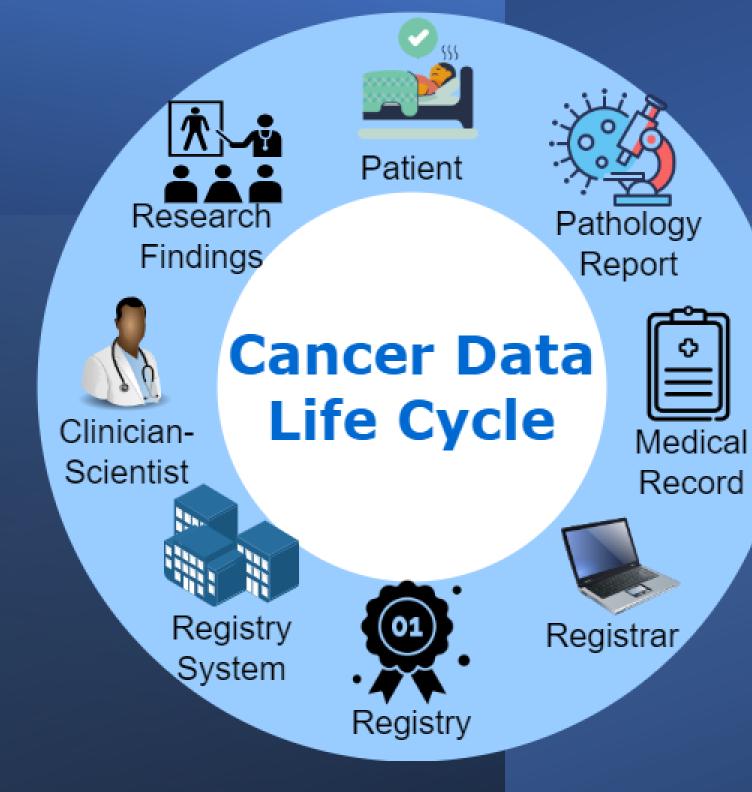
naaccr.org/cina-


CCR Program Data Use &

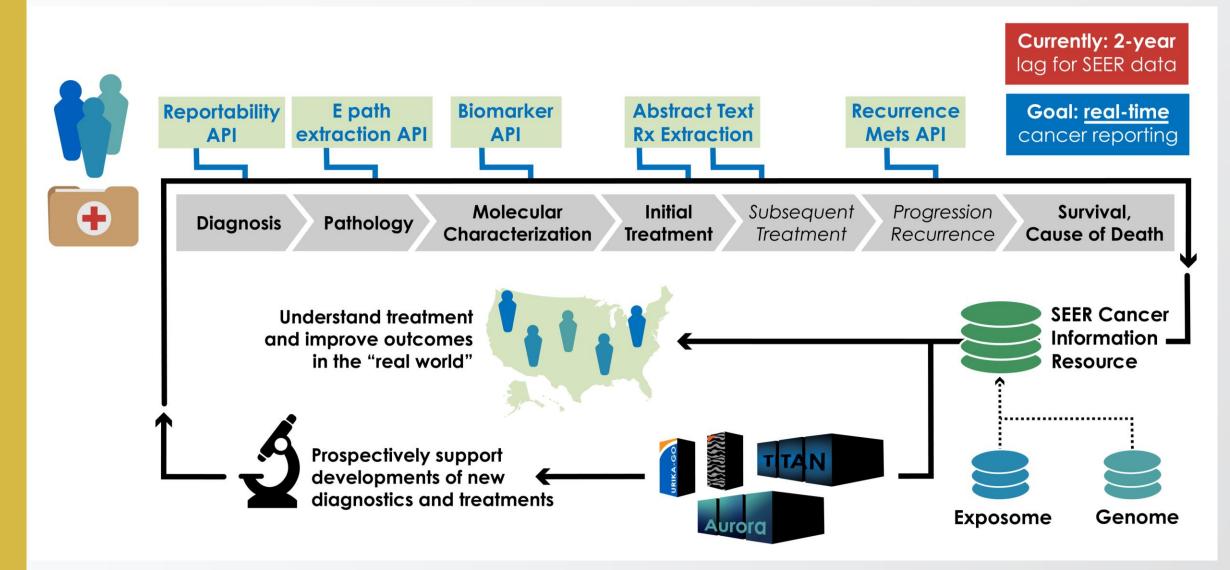
naaccr.org

Accessing U.S. Population-Based Cancer Registry Data

wно	NCI - SEER	CDC & NCI - USCS	NAACCR			
WHAT	NCI - SEER data	CDC-NPCR & NCI-SEER data	U.S. & Canadian regist			
WHERE	seer.cancer.gov/data-software/	cdc.gov/uscs	apps.naaccr.org/da			
EXPLORE	seer.cancer.gov/ statistics/interactive.html	cdc.gov/cancer/dataviz	apps.naaccr.org/ explorer/			
HOW	<section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item></list-item></list-item></section-header></section-header></section-header></section-header></section-header></section-header>	 cdc.gov/cancer/public-use Public Use Databases 1. Gain access to SEER Research Plus data 2. Sign USCS Research Data Agreement 3. Email to uscsdata@imsweb.com 	naaccr.org/cina-data-prod overview/ CiNA Public Use Data (counts, rates, & trends) 1. Request via DaRT 2. Sign Data Assurance Ag CiNA Research Datasets (counts, rates, trends, & prev 1. Identify NAACCR memb or Co-PI 2. Request via DaRT			
	Currently accessible via SEER*Stat					


seer.cancer.gov/seerstat/

greement


evalence) ber as PI

Al Tools in Cancer Surveillance

The MOSSAIC Challenge

Translational AI for better cancer surveillance & ultimately better cancer care.

Automating Common Data Models Deep Learning for Health Surveillance

Auto-Extraction from Pathology Reports Accuracy: 23-27% of path reports with >98 accuracy across all data elements.

Auto-coding performance can be easily tuned

Efficiency: saves ~14,000 person-hours/year

Gross Description:

Part #1 is labeled "left breast biopsy" and is received fresh after frozen section preparation. It consists of a single very firm nodularity measuring 3 cm in circular diameter and 1.5 cm in thickness, surrounded by adherent fibrofatty tissue. On section a pale gray, slightly mottled appearance is revealed. Numerous sections are submitted for permanent processing.

Part #2 is labeled "apical left axillary tissue" and is received fresh. It consists of two amorphous fibrofatty tissue masses without grossly discernible lymph nodes therein. Both pieces are rendered into numerous sections and submitted in their entirety for

Part #3 is labeled "contents of left radical mastectomy" and is received fresh. It consists of a large ellipse of skin overlying breast tissue, the ellipse measuring 20 cm in length and 14 cm in height. A freshly sutured incision extends 3 cm directly lateral from the areola, corresponding to the closure for removal of part #1. Abundant amounts of fibrofatty connective tissue surround the entire breast, and the deep aspect includes an 8 cm length of pectoralis minor and a generous mass of overlying pectoralis major muscle. Incision from the deepest aspect of the specimen beneath the tumor mass reveals tumor extension grossly to within 0.5 cm of muscle. Sections are submitted according to the following code: DE - deep surgical resection margins; SU, LA, INF, ME - full thickness radial respectively; NI - nipple and subjacent tissue. Lymph nodes dissected free from axillary fibrofatty tissue from levels I, II, and III will be labeled accordingly.

Microscopic:

Sections of part #1 confirm frozen section diagnosis of infiltrating duct carcinoma. It is to be noted that the tumor cells show considerable pleomorphism, and mitotic figures are frequent (as many as 4 per high power field). Many foci of calcification are present within the tumor.

SEER*Data Management System

		*		
Site	Subsite	Histology	Laterality	Behavior
C50	C501	8500	1	3

Take Home Messages

Pathologists & registrars as partners to ensure data quality

Al as an aid for pathologists & registrars instead of a replacement

Population-based data lead to more accurate answers to questions

NCICancerPathCHART@mail.nih.gov https://seer.cancer.gov/cancerpathchart/

NATIONAL CANCER INSTITUTE

The Future of Cancer Data: **Unlocking Insights With Pathology Reporting Summit** October 6, 2023